Biomarkers: Physiological & Laboratory Markers of Drug Effect

Janet Woodcock, M.D.
Director, Center for Drug Evaluation and Research
Food and Drug Administration
February 2011
Biomarker Definition

“A characteristic that is objectively measured and evaluated as an indicator of normal biologic processes, pathogenic processes, or pharmacologic responses to a therapeutic intervention”

Biomarkers Have Many Uses in Medicine

Markers of drug effect or response (laboratory, physiological, or other) are a subset of the general class of biomarkers.

Other biomarkers may include diagnostic, prognostic or physiologic status information not linked to drug response.
Clinical Endpoint Definition

“A characteristic or variable that reflects how a patient feels, functions or survives”

Clinical endpoints are usually acceptable as evidence of efficacy for regulatory purposes
Surrogate Endpoint Definition

A biomarker intended to substitute for a clinical endpoint. A surrogate endpoint is expected to predict clinical benefit (or harm, or lack of benefit) based on epidemiologic, therapeutic, pathophysiologic or other scientific evidence.
SURROGATE ENDPOINT

A surrogate endpoint of a clinical trial is a laboratory measurement or a physical sign used as a substitute for a clinically meaningful endpoint that measures directly how a patient feels, functions or survives. Changes induced by a therapy on a surrogate endpoint are expected to reflect changes in a clinically meaningful endpoint.

Robert J. Temple
SURROGATE MARKER

Use of this term is discouraged because it suggests that the substitution is for a marker rather than for a clinical endpoint.

Biomarkers in Drug Development
Use of Biomarkers in Early Drug Development and Decision Making

Evaluate activity in animal models

Bridge animal and human pharmacology via proof-of-mechanism or other observations

Evaluate safety in animal models, e.g., toxicogenomics

Evaluate human safety early in development
Examples of Biomarkers Commonly used in Drug Development

Safety biomarkers: serum creatinine and blood chemistries; CBC, CXR, ECG

Drug pharmacokinetics

Pharmacodynamic (efficacy) biomarkers:
- Blood glucose
- Urine, sputum, etc cultures
- Pulmonary function tests
Use of Biomarkers in Later Drug Development and Decision Making

Evaluate dose-response and optimal regimen for desired pharmacologic effect

Use safety markers to determine dose-response for toxicity

Select or deselect patients for inclusion in trials

Determine role (if any) of differences in metabolism on above
Use of Surrogate Endpoints in Late Drug Development

Use to assess whether drug has clinically significant efficacy: this is often faster than using clinical endpoint

Surrogate endpoints may be used to support “accelerated approval” of a drug if the surrogate is deemed reasonably likely to predict a clinical endpoint of interest

A few surrogate endpoints are acceptable for full approval (e.g., are “validated”)

Biomarkers used as Surrogate Endpoints

“Validated Surrogate Endpoints”
 Blood pressure
 Bone mineral density for estrogenic compounds
 Hemoglobin A1C for glycemic control

“Non-Validated Surrogates” used for accelerated approval
 HIV copy number
 Tumor shrinkage
The Most Widely Used Surrogate Endpoint*

BLOOD LEVELS AS A SURROGATE FOR CLINICAL EFFICACY AND TOXICITY IN THE EVALUATION OF GENERIC DRUGS

* Comment by Carl Peck: CDDS WORKSHOP, McLean, VA, May 13, 1998
Use of Biomarkers in Clinical Practice

Disease and disease subtype diagnosis

Prognostic determination

Selection of appropriate therapy
 Maximize efficacy
 Minimize toxicity

Selection of correct dose

Monitoring outcomes (good and bad)
Why Are Biomarkers Important?

Diagnosis is the foundation of therapy

Biomarkers are quantitative measures that allow us to diagnose and assess the disease process and monitor response to treatment

Biomarkers are also crucial to efficient medical product development

As a consequence of scientific, economic and regulatory factors, biomarker development has lagged significantly behind therapeutic development
Biomarker Development: More is at Stake than Efficient Drug Development

Biomarkers are needed to create evidence-based medicine as well as personalized medicine: who should be treated, how and with what

Absent new markers, advances towards more targeted therapy will be limited and treatment will remain largely empirical (i.e., trial and error)

It is imperative that biomarker development be accelerated along with therapeutics
Problem: Classic Thinking about Biomarkers Inhibits New Biomarker Development

Development of biomarkers “confounded” with the surrogate endpoint issue

Near impossibility of “validating” new surrogates has created a significant barrier

I will present the classic view first (slides courtesy of Dr. Art Atkinson) and then a proposal for a new framework

Note: classic view not “wrong” as much as limiting
HIERARCHY OF BIOMARKERS (Classic view)

Graphic illustration

↑Validity Biomarkers → Surrogate Endpoints
HIRARCHY OF BIOMARKERS* (Classic view)

TYPE 0: NATURAL HISTORY MARKER (Prognosis)

TYPE I: BIOLOGICAL ACTIVITY MARKER (Responds to therapy)

TYPE II: SINGLE OR MULTIPLE MARKER(S)
OF THERAPEUTIC EFFICACY (Surrogate endpoint, accounts fully for clinical efficacy)

“Validation” of Biomarkers (e.g., for use as Surrogate)

BIOLOGICAL PLAUSIBILITY
- **EPIDEMIOLOGIC EVIDENCE THAT MARKER IS A RISK FACTOR**
- **MARKER MUST BE CONSISTENT WITH PATHOPHYSIOLOGY**
- **MARKER MUST BE ON CAUSAL PATHWAY**
- **CHANGES IN MARKER REFLECT CHANGES IN PROGNOSIS**

STATISTICAL CRITERIA
- **CHANGES IN MARKER MUST BE CORRELATED WITH CLINICAL OUTCOME** (but correlation does not equal causation)

(Not confounded by adverse drug effects)
ADDITIONAL SUPPORT FOR BIOMARKER as SURROGATE*

SUCCESS IN CLINICAL TRIALS
 EFFECT ON SURROGATE HAS PREDICTED OUTCOME WITH
 OTHER DRUGS OF SAME PHARMACOLOGIC CLASS

 EFFECT ON SURROGATE HAS PREDICTED OUTCOME FOR
 DRUGS IN SEVERAL PHARMACOLOGIC CLASSES

OTHER BENEFIT/RISK CONSIDERATIONS
 SERIOUS OR LIFE-THREATENING ILLNESS WITH NO
 ALTERNATIVE THERAPY

 LARGE SAFETY DATA BASE

 SHORT-TERM USE

 DIFFICULTY IN STUDYING CLINICAL ENDPOINT

Limitation of Current Conceptual Framework for Development of Surrogate Endpoints

Problems with use of surrogate endpoint identified in 1980s

CAST outcome:
 Use: antiarrhythmics for prevention of sudden death
 Surrogate: suppression of VBP's
 Mortality increased in treatment arms

Use of Surrogates Discouraged

Surrogate EP supposed to “completely correlate with the clinical endpoint”

This is not possible and has led to serious (but I would argue, misplaced) disillusionment with the use of biomarkers

Flemming TR, DeMets DL: Surrogate endpoints in clinical trials: are we being misled?

Surrogate Endpoint Development: 1990s

HIV epidemic spurred the use of new surrogate endpoints for antiretroviral therapy: highly controversial at first given CAST experience

Rigorous statistical criteria for assessing correlation of candidate surrogate with clinical outcome were published*

No surrogate EP has ever met these criteria

Surrogate Endpoint Development: HIV

HIV RNA copy number is now used as early drug development tool, surrogate endpoint in trials, and for clinical monitoring of antiviral therapy.

Lack of complete correlation with clinical outcomes has not compromised utility.

Successful development of antiretrovirals and control of HIV infection.
Surrogate Endpoint Use: 2000s

Controversy over use of glycemic control as efficacy endpoint: rosiglitazone
 Wrong dispute

 Real argument is over how much premarket cardiovascular safety data to accumulate

Controversy over use of LDL cholesterol (as assessed by another biomarker, carotid artery intimal thickness on ultrasound): Vytorin
Fundamental Problems with the
Current Conceptual Framework
for Surrogate Endpoints

There is no “gold standard” clinical outcome measurement – concept of “ultimate” clinical outcome is flawed

Survival: data show that desirability of longer survival dependent on quality of life, in many individuals’ estimation.

Generalizability of any single outcome measure (e.g., mortality) can be limited by trial parameters (e.g., who was entered)

Confusion between desirability of prolonged observation (for safety and long term outcomes) and use of surrogate
Fundamental Problems with Current Conceptual Framework for Surrogate Endpoint Development

Patient outcomes are multidimensional—a single outcome measure (whether clinical or surrogate endpoint) can miss domains of interest.

Very difficult to capture both benefit and harm within a single measure—very unlikely for a biomarker.

The concept of “ultimate clinical outcome” includes parameters such as duration of observation that are important dimensions. However, knowledge about these dimensions could be acquired outside of the biomarker measurement.
Additional Problems with Surrogate Endpoint Framework

Per-patient view of outcomes very different from population mean view of outcomes.

For example, “ultimate” benefit in survival of 8% over placebo not meaningful to you if you are not in the 8% who actually respond.

Newer (and older, e.g., metabolizing enzymes) biomarkers provide information at the individual level.
Summary: Problems with Current Biomarker Conceptual Framework

Overemphasis on “surrogacy” as single objective of biomarker development

Difficulty in achieving surrogate “validation” frustrates progress

New science and technology will contribute numerous candidate biomarkers—require path forward
Fate of Most Candidate Biomarkers

Discovered in academic laboratory

Clinical series results published

Further small academic series published

Some uptake in academic centers in clinical care

Assay may be commercialized as laboratory service
Fate of Most Candidate Biomarkers

Small number may be developed into commercially available laboratory tests

Fewer may become integrated into clinical care

Evidence base for use often remains slim/controversial

Not adopted for regulatory use because of absence of needed evidence (e.g., PSA)
Future of Drug Development and Biomarker Development
Tightly Linked

Biomarkers represent bridge between mechanistic understanding of preclinical development and empirical clinical evaluation

Regulatory system has been focused on empirical testing: skewing overall clinical evaluation towards “all empirical”

Mechanistic clinical evaluation lacking
Towards the Robust Use of Biomarkers in Drug Development

Implement new biomarker use throughout preclinical and clinical development

“Qualify” biomarker for intended use: less focus on surrogacy

Goal is understanding mechanistic bases for individual response to therapy to increase informativeness of development process

Achieve more predictable drug development and therapeutic outcomes
Towards the Robust Use of Biomarkers in Drug Development

FDA’s Critical Path Initiative: proposal to use consortia to qualify biomarkers through resource sharing

Currently such consortia are being set up in areas such as animal safety testing and overall biomarker development

Clinical safety biomarkers of great interest
Promising Safety Biomarkers

Drug Metabolizing enzyme status
6-Mercaptopurine: enzyme TPMT

“Strattera”: enzyme CYP 2D6

Irinotecan: enzyme UGT1A1

Warfarin: enzyme CYP 2C9; pharmacodynamic biomarker VK0RC1) -- safety and efficacy

Genetic Basis of Rare, Serious Adverse Event
Abacavir: HLA-B*5701 and hypersensitivity

Carbamazepine: HLA-B*1502 and Stevens-Johnson Syndrome

More to come, e.g., hepatic injury
Potential Imaging Biomarkers

FDA Central and Peripheral Nervous System Drug Advisory Committee meeting: Oct 26, 2008

Three sponsors presented development plans for 3 different imaging agents for detection of amyloid in diagnosis of Alzheimer’s disease

Difficult challenge because of lack of a gold standard other than histologic verification
Potential Genomic Efficacy Biomarkers

Metabolism of prodrugs: necessary for conversion to active drug in vivo
 Clopidogrel
 Tamoxifen

Pathway markers in cancer
 Recent Oncology Drug Advisory Committee meeting on K-RAS and 2 EGFR targeted drugs (Erbitux, Vectibix) to treat colon cancer: should treatment be restricted to those with wild type K-RAS? (Dec 16, 2008)
Biomarker Development Consortia

Predictive Safety Consortium
C-Path Institute, Tucson AZ

Animal safety biomarkers generated as a part of animal toxicology testing

Thousands of animal tox studies done each year in US for drug development purposes

Firms had developed in-house biomarkers but not shared them
Predictive Safety Testing Consortium

Fourteen pharmaceutical companies joined consortium

Agreed to cross-validate markers for organ-specific drug injury

Have submitted first qualification package to FDA for renal injury markers

FDA and EMEA have accepted for use in animal studies
Other Biomarker Consortia

SAE consortium
 Industry consortium
 Genetic basis of serious rare adverse events

“The Biomarker Consortium”
 NIH/FDA/PhRMA/BIO/patient groups/ many others
 Discovery and qualification of biomarkers

Cardiovascular Markers
 Duke University/FDA/others
 Research on digital ECG warehouse
 Cardiac biomarker projects
Summary

Important public health need for development of additional biomarkers to target and monitor therapy

This requires use in clinical trials during drug development

Business model/regulatory path for such markers is not clear to industry

Clarification and stimulus required
Summary

Definitions for biomarkers, clinical outcomes and surrogate endpoints have been developed

Further development of the model needed in order to increase use and utility of markers in drug development

Single measurements will rarely capture all dimensions of clinical outcomes
Summary

FDA is developing these concepts as part of its “Critical Path” Initiative.

Development will include process for refining general framework as well as individual projects on biomarker and surrogate endpoint development.