Effects of Liver Disease on Pharmacokinetics
Juan J.L. Lertora, M.D., Ph.D.
Director
Clinical Pharmacology Program
November 3, 2011
National Institutes of Health
Clinical Center
GOALS of Liver Disease Effects Lecture

- Estimation of Hepatic Clearance
- Effect of Liver Disease on Elimination:
 - Restrictively Eliminated Drugs
 - Non-Restrictively Eliminated Drugs
- Other Effects of Liver Disease:
 - Renal Function
 - Drug Distribution
 - Drug Response
- Modification of Drug Therapy in Patients with Liver Disease
ADDITIVITY of Clearances

Equation showing that total elimination clearance equals the sum of renal and nonrenal clearances
CALCULATION OF CL_H

Equation showing that hepatic clearance is estimated as the total clearance minus the renal clearance, assuming that it equals non-renal clearance.
FICK EQUATION

Defines clearance as liver blood flow times the extraction ratio A-V/A.
Derivation of Rowland Equation (I)

Diagram of hepatic capillary blood flow, fraction of unbound drug and intrinsic clearance with the “well-stirred” model.
Derivation of Rowland Equation (II)

The same diagram now including volume and concentration terms and a mass balance equation for hepatic drug clearance.
Derivation of Rowland Equation (III)

The same diagram with a derivation of an extraction ratio term that includes unbound fraction, intrinsic clearance, and liver blood flow.
Rowland Equation
WELL-STIRRED COMPARTMENT

Rowland Equation for hepatic clearance.

Two limiting cases:

Restrictively metabolized drugs (influenced by protein binding)

Non-restrictively metabolized drugs (blood flow-dependent)
RESTRICTIVELY AND NON-RESTRICTIVELY ELIMINATED DRUGS

RESTRICTIVELY METABOLIZED DRUGS:
Phenytoin
Warfarin
Theophylline

NON-RESTRICTIVELY METABOLIZED DRUGS:
Lidocaine
Propranolol
Morphine
HEPATIC \textit{FIRST-PASS} METABOLISM

Equation for the extraction ratio A-V/A.

Illustration of hepatic first-pass metabolism and the portal and systemic circulations.
NON-RESTRICTIVELY Eliminated Drugs

These drugs have extensive first-pass metabolism.

Equation showing that hepatic clearance is a function of liver blood flow.
ACUTE VIRAL HEPATITIS
- Acute inflammatory condition

- Mild and *transient changes* related to extent of disease in most cases. Infrequently severe and fulminant

- *May become chronic* and severe

- Changes in drug disposition less than in chronic disease

- *Hepatic elimination returns to normal* as disease resolves
CHRONIC LIVER DISEASE
- Usually related to chronic alcohol use or viral hepatitis
- *Irreversible* hepatocyte damage
 - Decrease in *SERUM ALBUMIN* concentration
 - Decrease in *INTRINSIC CLEARANCE* of drugs
 - Intrahepatic and extrahepatic *shunting* of blood from functioning hepatocytes
 - *FIBROSIS* disrupts normal hepatic architecture
 - *NODULES* of regenerated hepatocytes form
RESTRICTIVELY METABOLIZED DRUGS: EFFECTS OF LIVER DISEASE

Equation showing that hepatic clearance equals unbound fraction times the intrinsic clearance.

Chart showing that hepatic clearance increases if albumin decreases, and decreases if intrinsic clearance decreases.
RESTRICTIVELY METABOLIZED DRUGS: EFFECT OF PROTEIN BINDING CHANGES

Equations showing that free drug concentration at steady-state is a function of dosing rate and intrinsic hepatic clearance.
FREE and TOTAL PHENYTOIN Levels
(DOSE = 300 MG/DAY)

Chart showing that total Phenytoin concentration is lower than normal in functionally anephric patients but free Phenytoin concentration is the same.
RESTRICTIVELY METABOLIZED DRUGS: EFFECT OF PROTEIN BINDING CHANGES

Chart showing a protein binding interaction with Warfarin. There is a transient increase in free Warfarin concentration and prothrombin time.
RESTRICTIVELY METABOLIZED DRUGS:
EFFECTS OF LIVER DISEASE

Equation showing that hepatic clearance equals unbound fraction times the intrinsic clearance.

Chart showing that hepatic clearance increases if albumin decreases, and decreases if intrinsic clearance decreases.
ROLE OF CYP ENZYMES IN HEPATIC DRUG METABOLISM

Pie chart showing relative hepatic content of CYP enzymes and pie chart showing % of drugs metabolized by CYP enzymes.
RESTRICTIVELY METABOLIZED DRUGS: EFFECT OF CIRRHOSIS ON Clint

Chart illustrating % of normal intrinsic clearance for normal, mild, moderate, and severe cirrhosis, and the impact on glucuronidation and CYP2D6, CY3A4, CYP2C19, and CYP1A2.
PUGH-CHILD CLASSIFICATION
OF LIVER DISEASE SEVERITY

Chart showing assessment parameters and assigned scores in addition to classification of clinical severity of mild, moderate and severe.
CORRELATION OF LAB TEST RESULTS WITH IMPAIRED CYP ENZYME FUNCTION

The Central Problem:
There is no laboratory test of liver function that is as useful for guiding drug dose adjustment in patients with liver disease as is the estimation of creatinine clearance in patients with impaired renal function.
CORRELATION OF SPECIAL TESTS OF LIVER FUNCTION WITH CHILD-PUGH SCORES*

Chart showing changes in indocyanine green and sorbitol clearances, and the galactose elimination and the antipyrine breath tests.

“PITTSBURGH COCKTAIL” APPROACH

<table>
<thead>
<tr>
<th>DRUG</th>
<th>ENZYME</th>
</tr>
</thead>
<tbody>
<tr>
<td>CAFFEINE</td>
<td>CYP 1A2</td>
</tr>
<tr>
<td>CHLORZOXAZONE</td>
<td>CYP 2E1</td>
</tr>
<tr>
<td>DAPSONE</td>
<td>CYP 3A + NAT2</td>
</tr>
<tr>
<td>DEBRISOQUIN</td>
<td>CYP 2D6</td>
</tr>
<tr>
<td>MEPHENYTOIN</td>
<td>CYP 2C19</td>
</tr>
</tbody>
</table>

RESTRICTIVELY METABOLIZED DRUGS:
EFFECTS OF LIVER DISEASE

Equation showing that hepatic blood flow equals unbound fraction times the intrinsic clearance.

Chart showing that hepatic clearance increases if albumin decreases, and decreases if intrinsic clearance decreases.

Portosystemic shunting reduces total hepatic clearance and increases free drug concentration.
EFFECTS OF HEPATIC SHUNTING ON ROWLAND EQUATION*

Modified Rowland Equation accounting for shunt blood flow.

RESTRICTIVELY METABOLIZED DRUGS: EFFECTS OF HEPATIC SHUNTING*

Chart showing liver disease severity, QT, QP, QP/QT, and Antipyrine CLH

NON-RESTRICTIVELY METABOLIZED DRUGS: EFFECTS OF LIVER DISEASE

Equation for hepatic clearance = blood flow showing that changes in protein binding and intrinsic clearance have no impact on hepatic clearance for these drugs.

Chart

* However, note that free concentration is ↑
NON-RESTRICTIVELY METABOLIZED DRUGS: EFFECTS OF LIVER DISEASE

Equation for CLH = \(Q \)

Equation for hepatic clearance = blood flow showing that changes in protein binding and intrinsic clearance have no impact on hepatic clearance for these drugs.

HOWEVER, \(fuCLint \) MAY NO LONGER BE \(\gg Q \)
NON-RESTRICTIVELY METABOLIZED DRUGS: EFFECTS OF LIVER DISEASE

Equation for $CL_H = Q$

Equation for hepatic clearance = blood flow showing that changes in protein binding and intrinsic clearance have no impact on hepatic clearance for these drugs.

Decreased hepatic perfusion results in increased oral bioavailability (F).
EFFECTS OF HEPATIC SHUNTING ON ROWLAND EQUATION*

Modified Rowland Equation

NON-RESTRICTIVELY METABOLIZED DRUGS: EFFECTS OF DECREASED LIVER PERFUSION*

Chart showing liver disease Severity, QT, QP, QP/QT, and ICG CLH (clearance of indocyanine green)

INFLUENCE OF PORTOSYSTEMIC SHUNTING ON ORAL BIOAVAILABILITY (f)

RESTRICTIVELY Eliminated Drugs:
 Little change
NON-RESTRICTIVELY Eliminated Drugs:
 SHUNTING may markedly increase extent of drug absorption (F)
CIRRHOSIS AFFECTS EXPOSURE TO SOME NON-RESTRICTIVELY METABOLIZED DRUGS

Chart showing increased Absolute Bioavailability and relative exposure cirrhotics/control of Meperidine, Pentazocine, and Propranolol.

* THIS ALSO INCORPORATES 55% INCREASE IN PROPRANOLOL fu
CIRRHOSIS AFFECTS RENAL FUNCTION:
THE HEPATORENAL SYNDROME

-Risk in Patients with Cirrhosis, Ascitis, and GFR > 50 mL/min:
 - 18% within 1 year
 - 39% within 5 years

-Predictors of Risk:
 - Small liver
 - Low serum albumin
 - High plasma renin

-Cockcroft and Gault Equation may overestimate renal function
CIRRHOSIS AFFECTS RENAL FUNCTION:
THE HEPATORENAL SYNDROME

- The Syndrome has a FUNCTIONAL
rather than an Anatomical Basis.
HEPATOrenal syndrome
ANTEmORTEM ARTERIOGRAM

There is no renal perfusion.
HEPATORENAL SYNDROME

POSTMORTEM Arteriogram

Renal perfusion appears normal.
CIRRHOSIS AFFECTS RENAL FUNCTION: THE HEPATORENAL SYNDROME

- Therapy with some drugs *may precipitate* Hepatorenal Syndrome

 ACE Inhibitors
 NSAIDs
 Furosemide (High Total Doses)
CIRROSIS MAY AFFECT
DRUG DISTRIBUTION

- Increased *Free Concentration of*
 NON-RESTRICTIVELY Eliminated Drugs
 (e.g. PROPRANOLOL)

- Increased Permeability of *Blood:CNS Barrier*
 (e.g. CIMETIDINE)
CIRRHOSIS AFFECTS DRUG DISTRIBUTION:
INCREASED CNS PENETRATION OF CIMETIDINE*

Chart showing cimetidine CSF/serum ratio from normal to renal + liver disease to liver disease

CIRRHOSIS MAY AFFECT PHARMACODYNAMICS

- Sedative response to BENZODIAZEPINES is exaggerated

- Response to LOOP DIURETICS is reduced
DRUG DOSING IN PATIENTS WITH LIVER DISEASE

The Central Problem:
There is no laboratory test of liver function that is as useful for guiding drug dose adjustment in patients with liver disease as is the estimation of creatinine clearance in patients with impaired renal function.
PUGH-CHILD CLASSIFICATION
OF LIVER DISEASE SEVERITY

Chart showing assessment parameters with assigned score and classification of clinical severity of mild, moderate and severe.
Drugs *CONTRAINDICATED* in Patients with Severe Liver Disease

- *May precipitate renal failure:*
 - NSAIDs
 - ACE Inhibitors
- *Predispose to bleeding:*
 - β-LACTAMS with N-Methylthiotetrazole Side Chain
 (e.g. CEFOTETAN)
Drug Requiring $\geq 50\%$ *Dose Reduction* in Patients with MODERATE CIRRHOSIS

<table>
<thead>
<tr>
<th>ANALGESIC DRUGS</th>
<th>CHANGE IN CIRRHOSIS</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>F</td>
</tr>
<tr>
<td>Morphine</td>
<td>↑ 213%</td>
</tr>
<tr>
<td>Meperidine</td>
<td>↑ 94%</td>
</tr>
<tr>
<td>Pentazocine</td>
<td>↑ 318%</td>
</tr>
</tbody>
</table>
Drugs Requiring \(\geq 50\% \) \textit{Dose Reduction} in Patients with \textsc{MODERATE CIRRHOSIS}

<table>
<thead>
<tr>
<th>CARDIOVASC. DRUGS</th>
<th>CHANGE IN CIRRHOSIS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Propafenone</td>
<td>(\uparrow 257%)</td>
</tr>
<tr>
<td>Verapamil</td>
<td>(\uparrow 136%)</td>
</tr>
<tr>
<td>Nifedipine</td>
<td>(\uparrow 78%)</td>
</tr>
<tr>
<td>Losartan</td>
<td>(\uparrow 100%)</td>
</tr>
</tbody>
</table>
Drugs Requiring $\geq 50\%$ *Dose Reduction* in Patients with MODERATE CIRRHOSIS

<table>
<thead>
<tr>
<th></th>
<th>CHANGE IN CIRRHOSIS</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>F</td>
</tr>
<tr>
<td>OTHER DRUGS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Omeprazole</td>
<td>\uparrow 75%</td>
<td>\downarrow 89%</td>
</tr>
<tr>
<td>Tacrolimus</td>
<td>\uparrow 33%</td>
<td>\downarrow 72%</td>
</tr>
</tbody>
</table>
RECOMMENDED EVALUATION OF PHARMACOKINETICS IN LIVER DISEASE PATIENTS*

*FDA Clinical Pharmacology Guidance, May 2003

REduced Study Design:
- Study Control Patients and Patients with Child-Pugh Moderate Impairment
- Findings in Moderate Category Applied to Mild Category; Dosing Prohibited in Severe Category

FULL Study Design:
- Study Control Patients and Patients in All Child-Pugh Categories
- Population PK Approach