Drug Absorption and Bioavailability

Juan J.L. Lertora, M.D., Ph.D.
Director
Clinical Pharmacology Program
October 4, 2012

Office of Clinical Research Training and Medical Education
National Institutes of Health
Clinical Center

GOALS of Drug Absorption and Bioavailability Lecture

• Factors Affecting Drug Absorption
• Estimation of Bioavailability
• Clinical Significance of Differences in Bioavailability
• Prediction of Bioavailability in High-Throughput Drug Candidate Screening

Factors Affecting DRUG ABSORPTION

• Biopharmaceutic Factors
 - Tablet compression
 - Coating and Matrix
 - Excipients

• Interactions
 - Food
 - Other Drugs
 - Bacteria

• Physiological Factors
Factors Affecting Drug Absorption

- Biopharmaceutic Factors
- INTERACTIONS
 - Food
 - Other Drugs
 - Bacteria
- Physiologic Factors

ENTERIC METABOLISM OF DIGOXIN

Factors Affecting DRUG ABSORPTION

- Biopharmaceutic Factors
- Interactions
- PHYSIOLOGICAL FACTORS

Drug Absorption

Passive Non-Ionic Diffusion:
Primary mechanism for most drugs.

Drug Absorption

- Specialized Transport Mechanisms

Large Neutral Amino Acid Transporter:
L-Dopa, Methyldopa, Baclofen
Oligopeptide Transporter (PEPT-1):
Amino-beta-lactams
ACE Inhibitors

Monocarboxylic Acid Transporter:
Salicylic acid
Pravastatin

FALLACIES Concerning Gastric Drug Absorption

• Weakly Acidic Drugs absorbed only in the stomach (pH partition hypothesis)
• Weakly Basic Drugs absorbed in the small intestine (pH partition hypothesis)
• Gastric pH is always acidic
In Fact, most drug absorption occurs in the SMALL INTESTINE
ASPIRIN ABSORPTION FROM STOMACH AND SMALL INTESTINE*

TABLE 1: ASPIRIN (ASA) ABSORPTION FROM SIMULTANEOUSLY PERFUSED STOMACH AND SMALL INTESTINE (3)

<table>
<thead>
<tr>
<th>pH</th>
<th>ASA ABSORPTION (micromol/100 mg protein/hr)</th>
<th>ASA SERUM LEVEL (mg/100 ml)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>STOMACH</td>
<td>SMALL BOWEL</td>
</tr>
<tr>
<td>3.5</td>
<td>346</td>
<td>469</td>
</tr>
<tr>
<td>6.5</td>
<td>0</td>
<td>424</td>
</tr>
</tbody>
</table>

Variation in Gastric and Intestinal pH*

PHYSIOLOGICAL FACTORS Affecting Drug Absorption

- **Rate of gastric emptying** is a major determinant of initial delay in drug absorption.
- **Intestinal motility** is a determinant of the extent of drug absorption.

PATTERNS OF GASTRIC MOTOR ACTIVITY

FASTING (Cyclical Pattern < 2 HR)
- Phase 1 - Quiescence
- Phase 2 - Irregular Contractions
- Phase 3 - Major Motor Complex Burst
- Phase 4 - Transition Period

POST PRANDIAL (Up to 10 hr delay)
- Pylorus constricted
- Antral contractions reduce particle size

Interdigestive Intestinal Motor Activity in Humans

GI TRANSIT - SUSTAINED-RELEASE CARBAMAZEPINE FORMULATION*

EXTENT RELEASED

75% 56%

Variation in “Peak” Levels ACETAMINOPHEN*

Gastric Emptying Rate Affects ACETAMINOPHEN Absorption*

Factors Affecting RATE and EXTENT of Drug Absorption

RESERVE LENGTH is the anatomical length over which absorption of a drug can occur MINUS the length at which absorption is complete.

Effect of METOCLOPRAMIDE on Digoxin Absorption*

Effect of PROPANTHELINE on Digoxin Absorption

Factors Affecting RATE and EXTENT of Drug Absorption

Normal Intestinal Villi
Broad Intestinal Villi in a Patient with SPRUE

Digoxin Levels in Patients with INTESTINAL MALABSORPTION*

<table>
<thead>
<tr>
<th>Dose for both Groups: 0.25 mg/day.</th>
<th>Controls</th>
<th>Malabsorption</th>
</tr>
</thead>
<tbody>
<tr>
<td>[DIGOXIN] (ng/mL)</td>
<td>1.3 ± 0.3</td>
<td>0.4 ± 0.3</td>
</tr>
<tr>
<td>Urine D-Xylose Excretion (gm/5 hr)</td>
<td>5 – 8†</td>
<td>1.1 – 4.1</td>
</tr>
</tbody>
</table>

† Normal Range

Factors Affecting RATE and EXTENT of Drug Absorption
P-GLYCOPROTEIN EFFLUX PUMP

INTESTINAL LUMEN

OUT

MEMBRANE

IN

ATP

ATP

SLIDE COURTESY OF M. GOTTFESMAN

BIOAVAILABILITY OF SOME P-GLYCOPROTEIN SUBSTRATES

<table>
<thead>
<tr>
<th>DRUG</th>
<th>> 70% ABSORPTION F %</th>
<th>30% - 70% ABSORPTION F %</th>
<th>< 30% ABSORPTION F %</th>
</tr>
</thead>
<tbody>
<tr>
<td>PHENOBARBITAL</td>
<td>100</td>
<td>70</td>
<td>28</td>
</tr>
<tr>
<td>LEVOFLOXACIN</td>
<td>99</td>
<td>65</td>
<td>25</td>
</tr>
<tr>
<td>METHADONE</td>
<td>92</td>
<td>60</td>
<td>24</td>
</tr>
<tr>
<td>PHENYTOIN</td>
<td>90</td>
<td>55</td>
<td>22</td>
</tr>
<tr>
<td>METHYLREDNISOLONE</td>
<td>82</td>
<td>55</td>
<td>18</td>
</tr>
<tr>
<td>TETRACYCLINE</td>
<td>77</td>
<td>48</td>
<td>15</td>
</tr>
<tr>
<td>AMITRIPTYLINE</td>
<td>95</td>
<td>38</td>
<td>13</td>
</tr>
<tr>
<td>ITRACONAZOLE</td>
<td>95</td>
<td>35</td>
<td>12</td>
</tr>
<tr>
<td>CHLORPROMAZINE</td>
<td>93</td>
<td>32</td>
<td>5</td>
</tr>
<tr>
<td>CYCLOSPORINE</td>
<td>92</td>
<td>30</td>
<td>8</td>
</tr>
<tr>
<td>TACROLIMUS</td>
<td>90</td>
<td>25</td>
<td>10</td>
</tr>
<tr>
<td>MORPHINE</td>
<td>90</td>
<td>20</td>
<td>10</td>
</tr>
<tr>
<td>VERAPAMIL</td>
<td>80</td>
<td>15</td>
<td>10</td>
</tr>
<tr>
<td>NICARDIPINE</td>
<td>75</td>
<td>15</td>
<td>10</td>
</tr>
<tr>
<td>ATORVASTATIN</td>
<td>70</td>
<td>10</td>
<td>5</td>
</tr>
<tr>
<td>DOKORUBICIN</td>
<td>65</td>
<td>5</td>
<td>1</td>
</tr>
</tbody>
</table>

> 70% BIOAVAILABILITY OF SOME P-GLYCOPROTEIN SUBSTRATES
FACTORS AFFECTING RATE AND EXTENT OF DRUG ABSORPTION

Sites of FIRST-PASS Elimination

- INTESTINAL MUCOSA
 - CYP Enzymes
 - P-Glycoprotein
- LIVER
 - CYP Enzymes

FIRST-PASS METABOLISM
First-Pass Metabolism
P-Glycoprotein Transport

ALDOSTERONE	MORPHINE*
CYCLOSPORINE*	NORTRIPTYLINE
ISOPROTERENOL	ORGANIC NITRATES
LIDOCAINE	PROPRANOLOL

* Known P-Glycoprotein Substrates

Factors Affecting RATE and EXTENT of Drug Absorption

GOALS of Drug Absorption and Bioavailability Lecture

- Factors Affecting Drug Absorption
- **ESTIMATION OF BIOAVAILABILITY**
- Clinical Significance of Differences in Bioavailability
- Prediction of Bioavailability
BIOAVAILABILITY

BIOAVAILABILITY is the *relative amount* (F) of a drug dose that reaches the systemic circulation *unchanged* and the *rate* at which this occurs.

Serum Concentration-Time Curve after a Single Oral Dose

Significance of AUC

\[
\begin{align*}
\text{dE} &= \text{CL}_E \cdot C \, dt \\
E &= \text{CL}_E \int_0^\infty C \, dt \\
D \cdot F &= \text{CL}_E \cdot \text{AUC}
\end{align*}
\]
Calculation of AUC
Trapezoidal Rule

From: Rowland M, Tozer TN. Clinical Pharmacokinetics, p 470.

AUC A > B

BUT IS A BETTER THAN B?

ABSOLUTE Bioavailability

\[\% \text{ Absorption} = \frac{D\text{ IV} \cdot AUC\text{ oral}}{D\text{ oral} \cdot AUC\text{ IV}} \times 100 \]

Comparison here is between an ORAL and an IV Formulation
RELATIVE Bioavailability

\[
\% \text{ Relative B.A.} = \frac{D_{\text{Ref.}} \times \text{AUC}_{\text{Test}}}{D_{\text{Test}} \times \text{AUC}_{\text{Ref.}}} \times 100
\]

Comparison here is between 2 ORAL Formulations

RELATIVE Bioavailability

AUC Values have to be Normalized for Dose
ASSESSMENT of Bioavailability

• AUC Estimates can be used to estimate Extent of Drug Absorption.

• Recovery of Parent Drug in Urine can be used to estimate Extent of Drug Absorption.

• How is ABSORPTION RATE assessed?
 - T_{MAX}
 - Integrated Pharmacokinetic Analysis of Absolute Bioavailability.

Extent of Absorption from Renal Excretion of Unchanged Drug

Since: $F \cdot D = E$ and $E = \frac{CL_D}{CL_{\text{r}}} \cdot E_{\text{r}}$

$F \cdot D_{\text{oral}} = \left(\frac{CL_D}{CL_{\text{r}}} \right) E_{\text{r \(oral\)}}$ and $D_{\text{IV}} = \left(\frac{CL_D}{CL_{\text{r}}} \right) E_{\text{r \(IV\)}}$

So: % Absorption = \[
\frac{D_{\text{IV}} \cdot E_{\text{r \(oral\)}}}{D_{\text{oral}} \cdot E_{\text{r \(IV\)}}} \times 100
\]
INTERACTION OF DRUG ABSORPTION AND DISPOSITION PROCESSES

ABSORPTION DISPOSITION DRUG IN PLASMA
G(t) ≠ H(t) = X(t)

IV DOSE
ORAL DOSE

MODEL Used to Analyze Kinetics of Drug Absorption

Calculation of Bioavailability from First-Order Absorption Model

\[F = \frac{k^a}{k^a + k^o} \]
Methods for Assessment of Absolute Bioavailability

- CONVENTIONAL:
 - IV and ORAL doses given on two separate occasions.
 - Requires two study sessions
 - Requires two sets of blood samples
 - Assumes no change in disposition parameters between studies

- STABLE ISOTOPE:
 - One study and set of blood samples
 - Special synthesis requirements
 - Mass Spectrometer Assay required

NAPA-^{13}C_2

\text{N-ACETYLPROCAINAMIDE (NAPA-^{13}C_2)}

Simultaneous Administration of Oral NAPA and IV NAPA-C^{13}O

MODEL Used to Analyze Oral NAPA and IV NAPA-C13 Kinetics*

BIOAVAILABILITY Estimates From Kinetic Analysis and URINE RECOVERY

<table>
<thead>
<tr>
<th>PATIENT NUMBER</th>
<th>KINETIC ANALYSIS (%)</th>
<th>NAPA RECOVERY IN URINE* (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>66.1</td>
<td>65.9</td>
</tr>
<tr>
<td>2</td>
<td>92.1</td>
<td>92.1</td>
</tr>
<tr>
<td>3</td>
<td>68.1</td>
<td>69.9</td>
</tr>
<tr>
<td>4</td>
<td>88.2</td>
<td>73.1</td>
</tr>
<tr>
<td>5</td>
<td>75.7</td>
<td>75.6</td>
</tr>
</tbody>
</table>

* Corrected for absorption lag time.

Factors Affecting RATE and EXTENT of Drug Absorption

- Drug Table or Capsule
- Stomach Contents
- Gastric Emptying Time
- Intestinal Peristalsis
- Luminal pH
- First-Pass Effect
- Portal Vein
- Hepatic Extraction
- CYP450 Enzyme System
- Protein Binding
- Renal Excretion
- Metabolism
NAPA PK Model After IV Dose

\[V_c = \frac{Q_s}{1 - e^{-t/V_s}} \]

\[CL_F = Q_s (1 - e^{-t/V_s}) \]

\[CL_F \text{ PARTLY REFLECTS SPLANCHNIC BLOOD FLOW} \]

\[V_F \text{ SPLANCHNIC} \]

\[V_S \text{ SOMATIC} \]

Relationship Between \(CL_F \) and Extent of NAPA Absorption*

\[R^2 = 0.8, \ p = 0.045 \]

\[65 \ 70 \ 75 \ 80 \ 85 \ 90 \]

\[0.8 \ 1 \ 1.2 \ 1.4 \ 1.6 \ 1.8 \ 2 \]

\[R^2 = 0.8, \ p = 0.045 \]

THOUGHTS About Absolute Bioavailability Studies

- Absolute Bioavailability is usually studied in Healthy Subjects, NOT in the Patient Population for whom the drug is intended.
- The Stable Isotope Method is ideally suited for studies in Special Populations (e.g. Pediatrics, Pregnant Women, other)
GOALS of Drug Absorption and Bioavailability Lecture

- Factors Affecting Drug Absorption
- Estimation of Bioavailability
- Clinical Significance of Differences in Bioavailability
- Prediction of Bioavailability

RELATIVE Bioavailability Terms

Bioequivalence: AUC and Cmax within 80% - 125% of reference compound.

Bioinequivalence: Greater difference in bioavailability.

Therapeutic Equivalence: Similar clinical effectiveness and safety.

Therapeutic Inequivalence: Important clinical difference in bioavailability.

AUC A > B: Therapeutic Significance?
AUC A > B: B Ineffective

AUC A > B: A and B Equally Effective

Equal AUC but Different Kₐ: B is Ineffective
Equal AUC but Different K_a: A is Toxic

RELATIVE BIOAVAILABILITY CONCLUSIONS

• BIOEQUIVALENCE = THERAPEUTIC EQUIVALENCE

• BIOINEQUIVALENCE *NOT NECESSARILY* = THERAPEUTIC INEQUIVALENCE

GOALS of Drug Absorption and Bioavailability Lecture

• Factors Affecting Drug Absorption
• Estimation of Bioavailability
• Clinical Significance
• *PREDICTION* of Bioavailability as part of High-Throughput Drug Candidate Screening
WHY DRUG DEVELOPMENT FAILS

• Unsuitable Biopharmaceutical Properties
• Unsuitable Clinical Pharmacokinetics
• Pharmacology (PD) Doesn’t Work in Humans
• Unexpected Toxicity is Encountered

* Ronald E. White, Bristol-Myers Squibb (From Good Ligands to Good Drugs, AAPS-NIGMS Symposium, February 19-21, 1998)

BIOPHARMACEUTIC DRUG CLASSIFICATION *

CLASS I:
High Solubility-High Permeability

CLASS II:
Low Solubility-High Permeability

CLASS III:
High Solubility-Low Permeability

CLASS IV:
Low Solubility-Low Permeability

Three CRITICAL Biopharmaceutical Properties

• Drug Solubility Relative to Dose
 GOOD = Highest Dose in 250 mL H₂O, pH 1.0-7.5

• Dissolution Rate of Formulation
 GOOD = 85% Dissolution in 15 min

• Intestinal Permeability of Drugs
Three CRITICAL Biopharmaceutical Properties

- Drug Solubility Relative to Dose
- Dissolution Rate of Formulation
- INTESTINAL PERMEABILITY of Drug

Bioavailability vs. Jejunal Permeability*

Bioavailability vs. Caco-2 Cell Permeability

Evaluation of Caco-2 Cell Model

* ADVANTAGES
 - *In Vitro* Method
 - Suitable for High-Throughput

* DISADVANTAGES
 - ↓ Paracellular Permeability
 - ↓ Drug Metabolizing Enzymes and Transporters
 - No Hepatic First-Pass Metabolism

BIOPHARMACEUTIC DRUG CLASSIFICATION *

CLASS I:
HIGH SOLUBILITY-HIGH PERMEABILITY

- *in vitro – in vivo* correlation generally good
- *but* no way to account for 1st pass metabolism

BIOPHARMACEUTIC DRUG CLASSIFICATION

CLASS II:
LOW SOLUBILITY-HIGH PERMEABILITY
- rate of absorption limited by dissolution rate
- *in vitro – in vivo* correlation tenuous since many factors may affect dissolution

BIOPHARMACEUTIC DRUG CLASSIFICATION

CLASS III:
HIGH SOLUBILITY-LOW PERMEABILITY
- Intestinal reserve length is marginal.
- If dissolution is rapid, bioavailability will reflect intestinal permeability and transit time.

BIOPHARMACEUTIC DRUG CLASSIFICATION

CLASS IV:
LOW SOLUBILITY-LOW PERMEABILITY
- *in vitro – in vivo* correlation poor
- good bioavailability not expected

THE BOTTOM LINE

CLASS I DRUGS:
HIGH SOLUBILITY-HIGH PERMEABILITY

- Preferred as development candidates
- FDA may waive repeat in vivo testing if initial formulation has good bioavailability*.