Structure and Function of ABC Transporters in Health and Disease

Michael M. Gottesman, M.D.
Chief, Laboratory of Cell Biology
Center for Cancer Research, NCI
National Institutes of Health, DHHS
Clinical Pharmacology, January 7, 2016
Overall Goals

• Define molecular mechanisms of drug resistance in cancer (natural products, platinum compounds)
• Determine the clinical relevance of mechanisms derived from *in vitro* studies
• Develop new approaches to exploit or circumvent clinically significant resistance mechanisms
• To learn more about the cellular pharmacology and pharmacokinetics of drugs
Drug Resistance: Specific Mechanisms

Gottesman et al., in press, Annu Rev Pharm Tox 2015
Cell-based mechanisms of resistance to anti-cancer drugs

- Decreased Uptake-- 100’s of Solute carriers
- Increased Efflux--48 ABC transporters

Reduced apoptosis
- Altered cell cycle checkpoints and/or growth pathways
- Increased metabolism of drugs
- Increased or altered targets
- Increased repair of damage
- Compartmentalization
Why study multidrug transporters?

• Important role in multidrug resistance in cancer and in pathogens
• Important role in drug pharmacokinetics (uptake, distribution, and excretion)
• Important role in drug toxicity
• Key role in development (stem cells, morphogenesis)
• To learn about the biology of all transport systems
ATP-Binding Cassette (ABC) Transporter Superfamily

• One of the largest family of transport proteins known. Currently, more than 2000 members have been identified.

• Transport substrates include-- ions, sugars, glycans, phospholipids, cholesterol, peptides, proteins, toxins, antibiotics, and hydrophobic natural product anticancer drugs.

• Structurally, consist of various combinations of ATP-binding cassettes and segments with 6 trans-membrane domains.
The Eukaryotic ABCome
57 ABC-family genes

From M. Dean
The Clustal W program was used to make the alignment of the NBDs and the tree was built by using the MEGA program -- By Mike Dean, NCI
ABC transporters play excretory and/or protective physiological roles

3 main multildrug transporters:

- ABCB1 (P-gp, P-glycoprotein)
- ABCC1 (MRP1)
- ABCG2 (BCRP, MXR)

Kannan et al., Clin Pharmacol. Ther., 2009
Human diseases associated with an ABC Transporter

<table>
<thead>
<tr>
<th>Disease</th>
<th>Transporter</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cancer</td>
<td>ABCB1, ABCC1, ABCG2</td>
</tr>
<tr>
<td>Cystic fibrosis</td>
<td>ABCC7 (CFTR)</td>
</tr>
<tr>
<td>Stargardt disease & AMD</td>
<td>ABCA4 (ABCR)</td>
</tr>
<tr>
<td>Tangier Disease (HDL deficiency)</td>
<td>ABCA1 (ABC1)</td>
</tr>
<tr>
<td>Progressive familial intrahepatic cholestasis</td>
<td>ABCB11(SPGP), ABCB4 (MDR2)</td>
</tr>
<tr>
<td>Dubin-Johnson syndrome</td>
<td>ABCC2 (MRP2)</td>
</tr>
<tr>
<td>Pseudoxanthoma elasticum</td>
<td>ABCC6 (MRP6)</td>
</tr>
<tr>
<td>Persistent hypoglycemia of infancy, neonatal diabetes</td>
<td>ABCC8 (SUR1), ABCC9 (SUR2)</td>
</tr>
<tr>
<td>Sideroblastic anemia and ataxia</td>
<td>ABCB7 (ABC7)</td>
</tr>
<tr>
<td>Adrenoleukodystrophy</td>
<td>ABCD1 (ALD)</td>
</tr>
<tr>
<td>Sitosterolemia</td>
<td>ABCG5, ABCG8</td>
</tr>
<tr>
<td>Immune deficiency</td>
<td>ABCB2 (Tap1), ABCB3 (Tap2)</td>
</tr>
</tbody>
</table>
ABC transporters that confer MDR: Domain organization

- **ABCB1**: TM Domain, ATP binding, TM Domain, ATP binding
- **ABCC1**: TM Domain
- **ABCG2**:
Overlapping substrate specificity of ABCB1, ABCG2 and ABCC1
Multiple ABC Transporters Confer Resistance to Anti-Cancer Drugs

<table>
<thead>
<tr>
<th>ABC Transporters</th>
<th>ABC3456</th>
<th>ABC7890</th>
<th>ABC1234</th>
<th>ABC5678</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vinca alkaloids</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Anthracyclines</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Epipodophyllotoxins</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Taxanes</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Kinase inhibitors</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Camptothecins</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Thiopurines</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Other</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Confers resistance

Selected
Hypothetical Model of Human P-glycoprotein

POINT MUTATIONS, **PHOTOAFFINITY LABELED**, **REGIONS**, **ATP SITE**, **PHOSPHORYLATION SITES**
P-glycoprotein removes hydrophobic substrates directly from the plasma membrane
Atomic models of the structures of P-gp

Mouse P-gp at 3.8Å (Aller and Chang) Human P-gp model based on Sav1866 (Xia)
Physiologic Role of P-glycoprotein
Role of P-glycoprotein in cancer

- Approximately 50% of human cancers express P-glycoprotein at levels sufficient to confer MDR
- Cancers which acquire expression of P-gp following treatment of the patient include leukemias, myeloma, lymphomas, breast, ovarian cancer; preliminary results with P-gp inhibitors suggest improved response to chemotherapy in some of these patients
- Cancers which express P-gp at time of diagnosis include colon, kidney, pancreas, liver; these do not respond to P-gp inhibitors alone and have other mechanisms of resistance
- Animal models with human cancer xenografts and BRCA1-driven mouse mammary cancers show role for P-gp in MDR (Pajic et al., Cancer Res. 69, 6396-6404, 2009)