GOALS of Drug Absorption and Bioavailability Lecture

• Factors Affecting Drug Absorption
• Estimation of Bioavailability
• Clinical Significance of Differences in Bioavailability
• Prediction of Bioavailability in High-Throughput Drug Candidate Screening

Guidance for Industry-FDA-CDER

• Bioavailability and Bioequivalence Studies Submitted in NDAs or INDs – General Considerations
 DRAFT GUIDANCE
 March 2014
 Biopharmaceutics
Factors Affecting DRUG ABSORPTION

- Biopharmaceutic Factors
 - Tablet compression
 - Coating and Matrix
 - Excipients
- Interactions
 - Food
 - Other Drugs
 - Bacteria
- Physiological Factors

Change in PHENYTOIN Excipients Results in Epidemic Toxicity*

Factors Affecting Drug Absorption

- Biopharmaceutic Factors
- Interactions
- PHYSIOLOGICAL FACTORS

Drug Absorption

Passive Non-Ionic Diffusion:

Primary mechanism for most drugs.
Drug Absorption
- Specialized Transport Mechanisms

Large Neutral Amino Acid Transporter:
- L-Dopa, Methyldopa, Baclofen

Oligopeptide Transporter (PEPT-1):
- Amino-beta-lactams
- ACE Inhibitors
- Valacyclovir

Monocarboxylic Acid Transporter:
- Salicylic acid
- Pravastatin
Drug Absorption
- Specialized Transport Mechanisms

Organic Anion Transporting Polypeptide:
Sulfasalazine (OATP2B1)
Fexofenadine (OATP1A2)

FALLACIES Concerning Gastric Drug Absorption

• Weakly Acidic Drugs absorbed only in the stomach (pH partition hypothesis)
• Weakly Basic Drugs absorbed in the small intestine (pH partition hypothesis)
• Gastric pH is always acidic
 In fact, most drug absorption occurs in the SMALL INTESTINE

ASPIRIN Absorption From STOMACH and SMALL INTESTINE*

<table>
<thead>
<tr>
<th>pH</th>
<th>ASA ABSORPTION (micromol/100 mg protein/hr)</th>
<th>ASA SERUM LEVEL (mg/100 ml)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>STOMACH</td>
<td>SMALL BOWEL</td>
</tr>
<tr>
<td>3.5</td>
<td>346</td>
<td>469</td>
</tr>
<tr>
<td>6.5</td>
<td>0</td>
<td>424</td>
</tr>
</tbody>
</table>

Variation in Gastric and Intestinal pH*

PHYSIOLOGICAL FACTORS Affecting Drug Absorption

- Rate of gastric emptying is a major determinant of initial delay in drug absorption.
- Intestinal motility is a determinant of the extent of drug absorption.

PATTERNS OF GASTRIC MOTOR ACTIVITY

FASTING (Cyclical Pattern < 2 HR)
- Phase 1 - Quiescence
- Phase 2 - Irregular Contractions
- Phase 3 - Major Motor Complex Burst
- Phase 4 - Transition Period
Interdigestive Intestinal Motor Activity in Humans

Patterns of Gastric Motor Activity

Post Prandial (Up to 10 hr delay)
- Pylorus constricted
- Antral contractions reduce particle size

GI Transit - Sustained-Release Carbamazepine Formulation

Variation in “Peak” Levels ACETAMINOPHEN*\(^\text{1}\)

- Levels measured 1-hour post dose

Gastric Emptying Rate Affects ACETAMINOPHEN Absorption*\(^\text{2}\)

- With metoclopramide
- Alone
- With propantheline

Factors Affecting RATE and EXTENT of Drug Absorption

- Various factors influencing absorption
- Diagram illustrating the process

RESERVE LENGTH

RESERVE LENGTH is the anatomical length over which absorption of a drug can occur MINUS the length at which absorption is complete.

Effect of METOCLOPRAMIDE on Digoxin Absorption

Effect of PROPANTHELINE on Digoxin Absorption

Factors Affecting RATE and EXTENT of Drug Absorption

Normal Intestinal Villi

Broad Intestinal Villi in a Patient with SPRUE
Digoxin Levels in Patients with INTESTINAL MALABSORPTION*

<table>
<thead>
<tr>
<th></th>
<th>CONTROLS</th>
<th>MALABSORPTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>[DIGOXIN] (ng/mL)</td>
<td>1.3 ± 0.3</td>
<td>0.4 ± 0.3</td>
</tr>
<tr>
<td>URINE D-XYLOSE EXCRETION (gm/5 hr)</td>
<td>5 – 8†</td>
<td>1.1 – 4.1</td>
</tr>
</tbody>
</table>

† NORMAL RANGE

Factors Affecting RATE and EXTENT of Drug Absorption

P-GLYCOPROTEIN EFFLUX PUMP

INTESTINAL LUMEN

OUT

MEMBRANE

IN

SLIDE COURTESY OF M. GOTTESMAN
BIOAVAILABILITY OF SOME P-GLYCOPROTEIN SUBSTRATES

<table>
<thead>
<tr>
<th>DRUG</th>
<th>F (%)</th>
<th>DRUG</th>
<th>F (%)</th>
<th>DRUG</th>
<th>F (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>PHENOBARBITAL</td>
<td>100</td>
<td>DIGOXIN</td>
<td>70</td>
<td>CYCLOSPORINE</td>
<td>26</td>
</tr>
<tr>
<td>LEVOFLOXACIN</td>
<td>99</td>
<td>INDINAVIR</td>
<td>65</td>
<td>TACROLIMUS</td>
<td>25</td>
</tr>
<tr>
<td>METHADONE</td>
<td>92</td>
<td>CIMETIDINE</td>
<td>60</td>
<td>MORPHINE</td>
<td>24</td>
</tr>
<tr>
<td>PHENYTIN</td>
<td>90</td>
<td>CLARITHROMYCIN</td>
<td>55</td>
<td>VERAPAMIL</td>
<td>22</td>
</tr>
<tr>
<td>METHYLPREDNISOLONE</td>
<td>82</td>
<td>ITRACONAZOLE</td>
<td>55</td>
<td>NICARDIPINE</td>
<td>18</td>
</tr>
<tr>
<td>TETRACYCLINE</td>
<td>77</td>
<td>AMITRIPTYLINE</td>
<td>48</td>
<td>SIROLIMUS</td>
<td>15</td>
</tr>
<tr>
<td></td>
<td></td>
<td>DILTIAZEM</td>
<td>38</td>
<td>SAQUINAVIR</td>
<td>13</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ERYTHROMYCIN</td>
<td>35</td>
<td>ATORVASTATIN</td>
<td>12</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CHLORPROMAZINE</td>
<td>32</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

FACTORS AFFECTING RATE AND EXTENT OF DRUG ABSORPTION

12
Sites of FIRST-PASS Elimination

- INTESTINAL MUCOSA
 CYP Enzymes
 P-Glycoprotein
- LIVER
 CYP Enzymes

FIRST-PASS METABOLISM

First-Pass Metabolism ± P-Glycoprotein Transport

- ALDOSTERONE
- CYCLOSPORINE*
- ISOPROTERENOL
- LIDOCAINE
- MORPHINE*
- NORTRIPTYLINE
- ORGANIC NITRATES
- PROPRANOLOL

* Known P-Glycoprotein Substrates
BIOAVAILABILITY is the RELATIVE AMOUNT (F) of a drug dose that reaches the systemic circulation unchanged and the RATE at which this occurs.
Serum Concentration-Time Curve after a Single Oral Dose

Significance of AUC

\[dE = \text{CL}_E \cdot C \, dt \]

\[E = \text{CL}_E \int_0^\infty C \, dt \]

\[D \cdot F = \text{CL}_E \cdot \text{AUC} \]

Calculation of AUC
Trapezoidal Rule

From: Rowland M, Tozer TN. Clinical Pharmacokinetics. p 470.
AUC A > B

ABSOLUTE Bioavailability

\[
\% \text{ Absorption} = \frac{D_{\text{IV}} \cdot AUC_{\text{oral}}}{D_{\text{oral}} \cdot AUC_{\text{IV}}} \times 100
\]

Comparison here is between an ORAL and an IV Formulation

RELATIVE Bioavailability

\[
\% \text{ Relative B.A.} = \frac{D_{\text{Ref.}} \cdot AUC_{\text{Test}}}{D_{\text{Test}} \cdot AUC_{\text{Ref.}}} \times 100
\]

Comparison here is between 2 ORAL Formulations
RELATIVE Bioavailability

\[
\% \text{ Relative B.A.} = \frac{\frac{D_{\text{Ref.}} \cdot AUC_{\text{Test}}}{D_{\text{Test}} \cdot AUC_{\text{Ref.}}}}{100}
\]

AUC Values have to be

Normalized for Dose

ASSESSMENT of Bioavailability

- AUC Estimates can be used to estimate Extent of Drug Absorption
- Recovery of Parent Drug in Urine can be used to estimate Extent of Drug Absorption
- How is ABSORPTION RATE assessed?
 - \(T_{\text{MAX}} \)
 - Integrated Pharmacokinetic Analysis of Absolute Bioavailability.
Extent of Absorption from Renal Excretion of Unchanged Drug

Since: \(F \cdot D = E \) and \(E = \left(\frac{C_{L_E}}{C_{L_R}} \right) E_R \)

\[
F \cdot D_{oral} = \left(\frac{C_{L_E}}{C_{L_R}} \right) E_{R(oral)} \quad \text{and} \quad D_{IV} = \left(\frac{C_{L_E}}{C_{L_R}} \right) E_{R(IV)}
\]

So: % Absorption = \(\frac{D_{IV} \cdot E_{R(oral)}}{D_{oral} \cdot E_{R(IV)}} \times 100 \)

ASSESSMENT of Bioavailability

- AUC Estimates Can Be Used to Estimate Extent of Drug Absorption.
- HOW IS ABSORPTION RATE ASSESSED?
 - \(T_{MAX} \)
 - Integrated Pharmacokinetic Analysis of Absolute Bioavailability.

INTERACTION OF DRUG ABSORPTION AND DISPOSITION PROCESSES

\(G(t) * H(t) = X(t) \)
MODEL Used to Analyze Kinetics of Drug Absorption

Calculation of Bioavailability from First-Order Absorption Model

\[F = \frac{k_a}{k_a + k_0} \]

Methods for Assessment of Absolute Bioavailability

- **CONVENTIONAL:**
 - IV and ORAL doses given on two separate occasions.
 - Requires two study sessions
 - Requires two sets of blood samples
 - Assumes no change in disposition parameters between studies
- **STABLE ISOTOPE:**
 - One study and set of blood samples
 - Special synthesis requirements
 - Mass Spectrometer Assay required
Simultaneous Administration of Oral NAPA and IV NAPA-13C

MODEL Used to Analyze Oral NAPA and IV NAPA-13C Kinetics*

BIOAVAILABILITY Estimates From Kinetic Analysis and URINE RECOVERY

<table>
<thead>
<tr>
<th>PATIENT NUMBER</th>
<th>KINETIC ANALYSIS (%)</th>
<th>NAPA RECOVERY IN URINE* (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>66.1</td>
<td>65.9</td>
</tr>
<tr>
<td>2</td>
<td>92.1</td>
<td>92.1</td>
</tr>
<tr>
<td>3</td>
<td>68.1</td>
<td>69.9</td>
</tr>
<tr>
<td>4</td>
<td>88.2</td>
<td>73.1</td>
</tr>
<tr>
<td>5</td>
<td>75.7</td>
<td>75.6</td>
</tr>
</tbody>
</table>

* Corrected for absorption lag time.

Factors Affecting RATE and EXTENT of Drug Absorption

NAPA PK Model After IV Dose

\[
\begin{align*}
C_{Lr} &= Q_s \left(1 - e^{-\alpha t/\theta_s} \right) \\
C_{Lp} &= Q_s \left(1 - e^{-\alpha t/\theta_p} \right)
\end{align*}
\]

\[V_F = \text{SPLANCHNIC} \]

\[V_S = \text{SOMATIC} \]
Relationship Between CL_F and Extent of NAPA Absorption*

\[R^2 = 0.8, \ p = 0.045 \]

Additional Considerations

Absolute Bioavailability Studies

- Absolute Bioavailability is usually studied in healthy subjects, *NOT* in the patient population for whom the drug is intended.
- The Stable Isotope Method is ideally suited for studies in special populations (e.g. Pediatrics, Pregnant Women, other)

RELATIVE Bioavailability Terms

Bioequivalence: AUC and Cmax within 80% - 125% of reference compound.

Bioinequivalence: Greater difference in bioavailability.

Therapeutic Equivalence: Similar clinical effectiveness and safety.

Therapeutic Inequivalence: Important clinical difference in bioavailability.
Standard Bioequivalence Study

• Single-dose, two-way, crossover design – *Usually in healthy subjects.*
• Two one-sided statistical test procedure – *Is the test product less bioavailable relative to a reference product? (80% limit)*
• *Is the reference product less bioavailable relative to the test product? (125% limit)*

*All data expressed as a ratio of average AUC and Cmax for test product/reference product (125% reciprocal of 80%)

GOALS of Drug Absorption and Bioavailability Lecture

• Factors Affecting Drug Absorption
• Estimation of Bioavailability
• Clinical Significance of Differences in Bioavailability
• Prediction of Bioavailability

AUC A > B: Therapeutic Significance?
AUC A > B: B Ineffective

AUC A > B: A and B Equally Effective

Equal AUC but Different K_a: B is Ineffective
RELATIVE BIOAVAILABILITY CONCLUSIONS

- **BIOEQUIVALENCE** = THERAPEUTIC EQUIVALENCE
- **BIOINEQUIVALENCE NOT NECESSARILY** = THERAPEUTIC INEQUIVALENCE

GOALS of Drug Absorption and Bioavailability Lecture

- Factors Affecting Drug Absorption
- Estimation of Bioavailability
- Clinical Significance
- *PREDICTION* of Bioavailability as part of *High-Throughput Drug Candidate Screening*
WHY DRUG DEVELOPMENT FAILS

- Unsuitable Biopharmaceutical Properties
- Unsuitable Clinical Pharmacokinetics
- Pharmacology (PD) Doesn’t Work in Humans
- Unexpected Toxicity is Encountered

* Ronald E. White, Bristol-Myers Squibb (From Good Ligands to Good Drugs, AAPS-NIGMS Symposium, February 19-21, 1998)

BIOPHARMACEUTIC Drug Classification *

CLASS I:
High Solubility-High Permeability
CLASS II:
Low Solubility-High Permeability
CLASS III:
High Solubility-Low Permeability
CLASS IV:
Low Solubility-Low Permeability

Three CRITICAL Biopharmaceutical Properties

- Drug Solubility Relative to Dose
 GOOD = Highest Dose in 250 mL H₂O, pH 1.0-7.5
- Dissolution Rate of Formulation
 GOOD = 85% Dissolution in 15 min
- Intestinal Permeability of Drugs
Correlation of Rates of Drug DISSOLUTION and Oral ABSORPTION

\[y = -8.6 + 1.07x \]
\[R^2 = 0.970 \]

Three CRITICAL Biopharmaceutical Properties

- Drug Solubility Relative to Dose
- Dissolution Rate of Formulation
- INTESTINAL PERMEABILITY of Drug

Bioavailability vs. Jejunal Permeability*

Bioavailability vs. Caco-2 Cell Permeability

Evaluation of Caco-2 Cell Model

- **ADVANTAGES**
 - *In Vitro* Method
 - Suitable for High-Throughput
- **DISADVANTAGES**
 - ↓ Paracellular Permeability
 - ↓ Drug Metabolizing Enzymes and Transporters
 - No Hepatic First-Pass Metabolism

BIOPHARMACEUTICAL DRUG CLASSIFICATION

CLASS I:
HIGH SOLUBILITY-HIGH PERMEABILITY

- *in vitro* – *in vivo* correlation generally good
- *but* no way to account for 1st pass metabolism

BIOPHARMACEUTIC DRUG CLASSIFICATION

CLASS II:
LOW SOLUBILITY-HIGH PERMEABILITY
- rate of absorption limited by dissolution rate
- *in vitro – in vivo* correlation tenuous since many factors may affect dissolution

BIOPHARMACEUTIC DRUG CLASSIFICATION

CLASS III:
HIGH SOLUBILITY-LOW PERMEABILITY
- Intestinal reserve length is marginal.
- If dissolution is rapid, bioavailability will reflect intestinal permeability and transit time.

BIOPHARMACEUTIC DRUG CLASSIFICATION

CLASS IV:
LOW SOLUBILITY-LOW PERMEABILITY
- *in vitro – in vivo* correlation poor
- good bioavailability not expected

THE BOTTOM LINE

CLASS I DRUGS:
HIGH SOLUBILITY-HIGH PERMEABILITY
- Preferred as development candidates
- FDA may waive repeat in vivo testing if initial formulation has good bioavailability*.